Abstract

The Membrane Invasion Culture System (MICS) assay was adapted for relatively rapid screening of compounds and used to identify anti-invasive drugs that inhibit human and murine tumor cell migration through a reconstituted basement membrane in vitro. Cell lines demonstrating low and high invasive and metastatic potentials were tested with all compounds for tumoricidal effects prior to evaluation in MICS at non-cytotoxic doses. The effect on invasive potential in the MICS assay was determined in 3 categories: (1) 48 hr drug pre-treatment prior to seeding in the MICS (exceptions: 90 min pre-treatment with pertussis toxin and, for some studies, continuous exposure for 2-7 days); (2) peptide or prostaglandins 2 hr after seeding and attachment to the membranes in MICS followed by continuous exposure; and (3) cells receiving neither drug nor peptide treatment and serving as controls in each MICS chamber. Since invasion involves cellular motility and deformability, some cytoskeleton disrupting agents were selected. Of these, vincristine, colcemid and colchicine inhibited invasion but taxol did not. Pre-treatment with cAMP agonists produced conflicting results: dibutyryl cAMP and 8-(4-chloro-phenylthio) cAMP resulted in 50% and 38% reduction in invasion, respectively, whereas 8-bromo cAMP stimulated invasive potential by 30%. Forskolin and cholera toxin both significantly reduced invasiveness. Pre-treatment with 5-azacytidine and araC, to consider the role of methylation and proliferations decreased invasive ability. Anti-metastatic drugs such as gamma-interferon and razoxane inhibited invasive potential but to varying degrees. Treatment of cells with prostaglandins E2, F2 alpha, A2, and D2 were ineffectual; however, indomethacin mildly inhibits invasion (less than 30%).(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.