Abstract

BackgroundThe Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in various bacteria and fungi. The procedure consists of electroporating a polymerase chain reaction (PCR) fragment that was obtained with a 1- or 3-step PCR protocol and that carries an antibiotic cassette flanked by a region homologous to the target locus into a strain that expresses the lambda Red recombination system.ResultsThis system has been modified for use in Pseudomonas aeruginosa. Chromosomal DNA deletions of single genes were generated using 3-step PCR products containing flanking regions 400–600 nucleotides (nt) in length that are homologous to the target sequence. A 1-step PCR product with a homologous extension flanking region of only 100 nt was in some cases sufficient to obtain the desired mutant. We further showed that the P. aeruginosa strain PA14 non-redundant transposon library can be used in conjunction with the lambda Red technique to rapidly generate large chromosomal deletions or transfer mutated genes into various PA14 isogenic mutants to create multi-locus knockout mutants.ConclusionThe lambda Red-based technique can be used efficiently to generate mutants in P. aeruginosa. The main advantage of this procedure is its rapidity as mutants can be easily obtained in less than a week if the 3-step PCR procedure is used, or in less than three days if the mutation needs to be transferred from one strain to another.

Highlights

  • The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in various bacteria and fungi

  • Gene disruption using a 3-step PCR product The mutagenesis was carried out by electroporating a polymerase chain reaction (PCR)-product that contains an antibiotic cassette flanked by sequences homologous to the targeted DNA into a strain expressing the lambda Red operon

  • In order to use this system in P. aeruginosa, we first cloned the lambda Red operon into the pUCP18 vector

Read more

Summary

Introduction

The Red recombinase system of bacteriophage lambda has been used to inactivate chromosomal genes in various bacteria and fungi. The procedure consists of electroporating a polymerase chain reaction (PCR) fragment that was obtained with a 1- or 3-step PCR protocol and that carries an antibiotic cassette flanked by a region homologous to the target locus into a strain that expresses the lambda Red recombination system. A more time efficient mutagenesis method that does not require cloning was developed recently and has been used in various bacteria and fungi [1,2,3]. The procedure involves the deletion of chromosomal genes via homologous recombination between the chromosomal region of interest and a polymerase chain reaction (PCR)-product that contains an antibiotic cassette (page number not for citation purposes). An efficient recombination between the PCR product and the chromosome is achieved by induction of the lambda phage Red operon. For example in Yersinia pseudotuberculosis, 55-nt homology extensions were generally not sufficient to allow recombination, while Y. pseudotuberculosis PCR products with extensions of approximately 500-nt, generated using a 3-step PCR procedure, could trigger reproducibly gene disruption [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call