Abstract

A novel coronavirus recently identified in Wuhan, China (2019-nCoV) has expanded the number of highly pathogenic coronaviruses affecting humans. The 2019-nCoV represents a potential epidemic or pandemic threat, which requires a quick response for preparedness against this infection. The present report uses the informational spectrum methodology to identify the possible origin and natural host of the new virus, as well as putative therapeutic and vaccine targets. The performed in silico analysis indicates that the newly emerging 2019-nCoV is closely related to severe acute respiratory syndrome (SARS)-CoV and, to a lesser degree, Middle East respiratory syndrome (MERS)-CoV. Moreover, the well-known SARS-CoV receptor (ACE2) might be a putative receptor for the novel virus as well. Actin protein was also suggested as a host factor that participates in cell entry and pathogenesis of 2019-nCoV; therefore, drugs modulating biological activity of this protein (e.g. ibuprofen) were suggested as potential candidates for treatment of this viral infection. Additional results indicated that civets and poultry are potential candidates for the natural reservoir of the 2019-nCoV, and that domain 288-330 of S1 protein from the 2019-nCoV represents promising therapeutic and/or vaccine target.

Highlights

  • Any reports and responses or comments on the article can be found at the end of the article

  • Sequences are transformed into signals by assignment of numerical values of each element. These values correspond to electron-ion interaction potential[6], determining electronic properties of amino acid/nucleotides, which are essential for their intermolecular interactions

  • These results show that (i) S1 proteins from 2019-nCoV, severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV and Bat SARS-like CoV encode common information, which is represented with the frequency F(0.257), and (ii) S1 proteins from 2019-nCoV are remarkable more informationally similar with S1 from SARS-CoV and MERS-CoV than with S1 from Bat SARS-like CoV

Read more

Summary

Introduction

Any reports and responses or comments on the article can be found at the end of the article. Different amino acid sequences of other coronaviruses were included: (i) S1 proteins from the following viruses: AVP78042, AVPvp78031, AY304486, AY559093, JX163927, YN2018B, KY417146, used already by other authors in the study of the phylogenetic relationship between 2019-nCoV and nearest bat and SARS-like CoVs (GISAID database); and (ii) S1 proteins from three first isolated human MERS-CoV: AGG22542, AFS88936, AFY13307, deposited in the GISAID database

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.