Abstract

Taxifolin is a plant flavonoid effective as an antioxidant. This study aimed to assess the effect of adding taxifolin to the semen extender during the cooling period before freezing on the overall post-thawing sperm variables of Bermeya goats. In the first experiment, a dose-response experiment was performed with four experimental groups: Control, 10, 50, and 100 μg/ml of taxifolin using semen from 8 Bermeya males. In the second experiment, semen from 7 Bermeya bucks was collected and extended at 20 °C using a Tris–citric acid–glucose medium supplemented with different concentrations of taxifolin and glutathione (GSH): control, 5 μM taxifolin, 1 mM GSH, and both antioxidants. In both experiments, two straws per buck were thawed in a water bath (37 °C, 30 s), pooled, and incubated at 38 °C. Motility (CASA) was assessed at 0, 2, and 5 h, and sperm physiology was assessed at 0 and 5 h by flow cytometry (viability, intact acrosome membrane, mitochondria membrane potential, capacitation, intracellular reactive oxygen species —ROS—, mitochondrial superoxide, and chromatin status). In experiment 2, an artificial insemination trial (AI) was included with 29 goats for testing the taxifolin 5-μM treatment on fertility. Data were analyzed with the R statistical environment using linear mixed-effects models. In experiment 1 and compared to the control, T10 increased progressive motility (P < 0.001) but taxifolin decreased total and progressive motility at higher concentrations (P < 0.001), both post-thawing and after the incubation. Viability decreased post-thawing in the three concentrations (P < 0.001). Cytoplasmic ROS decreased at 0 and 5 h at T10 (P = 0.049), and all doses decreased mitochondrial superoxide post-thawing (P = 0.024). In experiment 2, 5 μM taxifolin or 1 mM GSH (alone or combined) increased total and progressive motility vs. the control (P < 0.01), and taxifolin increased kinematic parameters such as VCL, ALH, and DNC (P < 0.05). Viability was not affected by taxifolin in this experiment. Both antioxidants did not significantly affect other sperm physiology parameters. The incubation significantly affected all the parameters (P < 0.004), overall decreasing sperm quality. Fertility after artificial insemination with doses supplemented with 5 μM taxifolin was 76.9% (10/13), not significantly different from the control group (69.2%, 9/13). In conclusion, taxifolin showed a lack of toxicity in the low micromolar range and could benefit goat semen cryopreservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.