Abstract

Diverse excitatory and inhibitory neuronal responses are mediated via Gq-coupled receptors, but the lack of a systematic comparison of different receptors or neurons has hindered a better understanding of these responses. Such a comparison may be provided by an exogenous receptor that is activated by compounds that have no effect on endogenous receptors. We therefore expressed an invertebrate biogenic amine receptor, the Drosophila octopamine receptor, in rat cortical neurons and compared octopamine receptor-mediated responses with those mediated by the group I metabotropic glutamate receptor, the endogenous Gq-coupled receptor in rat cortical neurons. Stimulation of either receptor did not result in a calcium response in octopamine receptor-expressing neurons, although octopamine preferentially elicited a calcium increase in octopamine receptor-expressing PC12h cells, while enhancing the neuronal depolarization-induced calcium increase and the electrical excitability. The increased excitability was caused by inward currents resulting from a reduction in the leak current, which was voltage-independent and blocked by genistein, a non-selective tyrosine kinase inhibitor. These results show that, in cortical neurons, exogenous octopamine receptor in mushroom bodies activated the same cell signaling pathway as endogenous metabotropic glutamate receptor, suggesting that the diverse neuronal responses mediated by Gq-coupled receptors are due to the properties of different neurons, rather than to the properties of the receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.