Abstract
The Dynamic Gastric Model (DGM) is an in-vitro system which aims to closely replicate the complex mixing, dynamic biochemical release and emptying patterns of the human stomach. In this study, the DGM was used to understand how the polymer content of hydrophilic matrices influences drug release in fasted and fed dissolution environments. Matrices containing a soluble model drug (caffeine) and between 10 and 30% HPMC 2208 (METHOCEL® K4M CR) were studied in the DGM under simulated fasted and fed conditions. The results were compared with compendial USP I and USP II dissolution tests. The USP I and II tests clearly discriminated between formulations containing different polymer levels, whereas the fasted DGM test bracketed drug release profiles into three groups and was not able to distinguish between some different formulations. DGM tests in the fed state showed that drug release was substantially influenced by the presence of a high fat meal. Under these conditions, there was a delay before initial drug release, and differences between matrices with different polymer contents were no longer clear. Matrices containing the typical amount of HPMC polymer (30% w/w) exhibited similar release rates under fed and fasted DGM conditions, but matrices with lower polymer contents exhibited more rapid drug release in the fasted state. In both the fasted and fed states erosion mechanisms appeared to dominate drug release in the DGM: most likely a consequence of the changing, cylindrical forces exerted during simulated antral cycling. This is in contrast to the USP tests in which diffusion played a significant role in the drug release process. This study is one of the first publications where a series of extended release (ER) formulations have been studied in the DGM. The technique appears to offer a useful tool to explore the potential sensitivity of ER formulations with respect to the gastric environment, especially the presence of food.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.