Abstract

Crevice corrosion affects the integrity of stainless steels used in components exposed to seawater. Traditionally, crevice corrosion testing involves the use of artificial crevice formers to obtain a critical crevice potential, which is a measure of the crevice corrosion resistance of the alloy. The critical acidification model proposed by Galvele predicts that the critical crevice potential is the minimum potential required to maintain an acidic solution with a critical pH inside either a pit or a crevice. Application of Galvele’s model requires an estimation of both the diffusion length and the i vs. E behavior of the metal in the solution inside the crevice. In this work, the crevice corrosion resistance of a 22%Cr duplex stainless steel (UNS S31803) and a 25%Cr super duplex stainless steels (UNS S32750) was investigated. The i vs. E response of the two stainless steels was determined in acidified solutions of various chloride concentrations, which simulate those found in an active crevice. Critical po...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call