Abstract

Heat-pulse methods to determine sap flux density in trees are founded on the theory of heat conduction and heat convection in an isotropic medium. However, sapwood is clearly anisotropic, implying a difference in thermal conductivity along and across the grain, and hence necessitates the theory for an anisotropic medium. This difference in thermal conductivities, which can be up to 50%, is, however, not taken into account in the key equation leading to the currently available heat-pulse methods. Despite this major flaw, the methods remain theoretically correct as they are based on derivations of the key equation, ruling out any anisotropic aspects. The importance of specifying the thermal characteristics of the sapwood according to axial, tangential or radial direction is revealed as well as referring to and using the proper anisotropic theory in order to avoid confusion and misinterpretation of thermal properties when dealing with sap flux density measurements or erroneous results when modelling heat transport in sapwood.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.