Abstract
Many bedrock units contain joint sets that commonly act as preferred paths for the movement of water, electrical charge, and possible contaminants associated with production or transit of crude oil or refined products. To facilitate the development of remediation programs, a need exists to reliably determine regional-scale properties of these joint sets: azimuth of transmissivity ellipse, dominant set, and trend(s). The surface azimuthal electrical resistivity survey method used for local in situ studies can be a noninvasive, reliable, efficient, and relatively cost-effective method for regional studies. The azimuthal resistivity survey method combines the use of standard resistivity equipment with a Wenner array rotated about a fixed center point, at selected degree intervals, which yields an apparent resistivity ellipse from which joint-set orientation can be determined. Regional application of the azimuthal survey method was tested at 17 sites in an approximately 500 km2 (193 mi2) area around Milwaukee, Wisconsin, with less than 15 m (50 ft) overburden above the dolomite. Results of 26 azimuthal surveys were compared and determined to be consistent with the results of two other methods: direct observation of joint-set orientation and transmissivity ellipses from multiple-well-aquifer tests. The average of joint-set trend determined by azimuthal surveys is within 2.5 of the average of joint-set trend determined by direct observation of major joint sets at 24 sites. The average of maximum of transmissivity trend determined by azimuthal surveys is within 5.7 of the average of maximum of transmissivity trend determined for 14 multiple-well-aquifer tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.