Abstract

Several lines of evidence show that in utero exposure to different toxicants has greater consequences than their exposure during adult life. This may be due to involvement of critical developmental stages, physiological immaturity and the long later-life span over which disease may initiate, develop and progress. The in vivo alkaline comet (single-cell gel electrophoresis) assay has been favoured by the scientific community for the evaluation of genotoxins. The objective of this study was to demonstrate the suitability of alkaline comet assay in detecting transplacental genotoxins using newborn mice. Here, we report the successful use of the comet assay in detecting multi-organ genotoxicity of known transplacental genotoxins in newborn mice. Three well known transplacental genotoxic agents, cyclophosphamide (CP), mitomycin-C (MMC) and zidovudine (AZT) were tested in pregnant Swiss mice. These compounds were administered in the late gestational period (16–20th days of pregnancy) and the comet assay was performed with lymphocytes, bone marrow, liver and kidney cells of newborn mice. Significant DNA damage was observed in all the tissues with tested transplacental genotoxins. The results of the comet assay were confirmed by the micronucleus (MN) assay of the peripheral blood of newborn mice. The results of this study provide sufficient evidence that the comet assay can be applied successfully for the detection of transplacental genotoxins in newborn mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.