Abstract

In this study, tablet tensile strength has been adjusted for tablet surface area and the average distance between particles in compacts of different materials. The aim of the study was to evaluate the feasibility of using this concept to assess the dominating interparticulate bonding mechanisms. Adjustment of the tensile strength for both tablet surface area and mean pore radius gave similar bonding strength values for materials bonding mainly by weak distance forces (crystalline lactose, sucrose, and microcrystalline cellulose) almost independently of compaction pressure. However, particle size and other factors may still affect the compensated strength values. The bond strength was much higher and more varied for materials bonding also with solid bridges (potassium chloride, sodium chloride, and possibly also sodium bicarbonate and amorphous lactose). For these materials, particle size and compaction pressure had a substantial effect on the bond strength. It is probably the formation of continuous bridges between adjacent particles that is important in these materials rather than the surface properties and the average distance between particles positioned at some distance from each other. Hence, adjusting the tensile strength of compacts does not necessarily reflect all the dominating factors responsible for interparticulate bonding. Nonetheless, adjustment for tablet surface area and mean pore radius allowed discrimination between different dominating interparticulate bonding mechanisms in these compacted materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.