Abstract
AbstractThis study investigates the mechanical, thermal, and flammability properties of synthetic wollastonite nanofibers (SWN) reinforced polyoxymethylene (POM) nanocomposites. SWN has been added into the POM nanocomposites in the range of 0.5–3 phr via melt blending. The mechanical properties were investigated through tensile and impact tests with scanning electron microscopy and energy dispersive X‐ray analysis. The thermal characterization was performed by thermogravimetry analysis and differential scanning calorimetry. Flame retardancy of nanocomposites was studied through cone calorimetry analysis and limiting oxygen index test. The tensile strength of nanocomposites improved by 5.88% at 1 phr SWN content, whereas Young's modulus increased with increasing content. The thermal stability of nanocomposites was enhanced as indicated by the higher initial degradation temperature, which rose about 22°C at 1 phr SWN content. The POM/SWN nanocomposites exhibited better mechanical strength despite their lower crystallinity due to the substantial reinforcing effect of SWN. The flame retardancy of nanocomposites improved, as indicated by the reduction of peak heat release rate from the cone calorimetry test. This study shows that SWN has simultaneously enhanced the mechanical strength, thermal stability, and flame retardancy of POM nanocomposites and has the potential in automotive applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.