Abstract

Characterization of anatomical and functional brain organization and development requires accurate identification of distinct neural circuits and regions in the immature and adult brain. Here we describe a zinc histochemical staining procedure that reveals differences in staining patterns among different layers and brain regions. Others have utilized this procedure not only to reveal the distribution of zinc-containing neurons and circuits in the brain, but also to successfully delineate areal and laminar boundaries in the developing and adult brain in several species. Here we illustrate this staining procedure with images from developing and adult ferret brains. We reveal a zinc-staining pattern that serves as an anatomical marker of areas and layers, and can be reliably used to distinguish visual cortical areas in the developing and adult visual cortex. The main goal of this protocol is to present a histochemical method that allows the accurate identification of layers and regions in the developing and adult brain where other methods fail to do so. Secondarily, in conjunction with densitometric image analysis, this method allows one to assess the distribution of synaptic zinc to reveal potential changes throughout development. This protocol describes in detail the reagents, tools, and steps necessary to successively stain frozen brain sections. Although this protocol is described using ferret brain tissue, it can easily be adapted for use in rodents, cats, or monkeys as well as in other brain regions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.