Abstract

Surface plasmon resonance (SPR) spectroscopy was applied to study in real time, the interaction between the tight junction proteins ZO-1 and occludin. To imitate the morphology of tight junctions, a cytosolic tail of mouse occludin was immobilised at the sensor and guanylate kinase-like domain (Guk) was allowed to pass over the modified chip surface. The Guk domain of ZO-1 (residues 644–812) was found to bind to the cytoplasmic, carboxy-terminal region of occludin (residues 378–521). This interaction was systematically characterised with respect to the concentrations of both proteins and the binding conditions. Under the given experimental conditions, association and dissociation showed saturation kinetics, with affinity in micromolar range: ka = 4.14 ± 0.52 × 103 M−1 s−1, kd = 3.04 ± 0.38 × 10−3 s−1, KD = 639 ± 51 nM. The results support the hypothesis that the Guk domain of ZO-1 is involved in the recruitment of the transmembrane protein occludin at tight junctions by interacting with the cytosolic carboxy-terminal sequence of occludin, located far from the cell membrane. We demonstrate the use of SPR spectroscopy as an effective approach for characterisation of the interactions of junction proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.