Abstract

The feasibility of using streamwise surface heat transfer measurements to detect the presence of flow separation in a two-dimensional reflected oblique shock/turbulent boundary layer interaction is reported. Surface heat transfer and static pressure data are presented for attached and separated flows for a free stream nominal Mach number range of 2.5 to 3.5 and shock generator angles of 2 to 8 degrees. The static pressure data do show the characteristic triple inflection point distribution for the strongly separated flow cases. The corresponding surface heat transfer data show unique trends that correlate well with the static pressure determination of the extent of the separated flow region. For the incipient or weakly separated flow cases, the static pressure data do not exhibit the characteristic triple inflection point distribution. However, the same trends in the heat transfer data that are seen for the strongly separated flow cases are evident for the weakly separated flows. Hence, the heat transfer data can be used to determine the extent of weakly separated flows when the surface static pressure distributions often can not.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.