Abstract

IntroductionComprehensive imaging using ultrasound and MRI of placenta accreta spectrum (PAS) aims to prevent catastrophic haemorrhage and maternal death. Standard MRI of the placenta is limited by between-slice motion which can be mitigated by super-resolution reconstruction (SRR) MRI. We applied SRR in suspected PAS cases to determine its ability to enhance anatomical placental assessment and predict adverse maternal outcome. MethodsSuspected PAS patients (n = 22) underwent MRI at a gestational age (weeks + days) of (32+3±3+2, range (27+1-38+6)). SRR of the placental-myometrial-bladder interface involving rigid motion correction of acquired MRI slices combined with robust outlier detection to reconstruct an isotropic high-resolution volume, was achieved in twelve. 2D MRI or SRR images alone, and paired data were assessed by four radiologists in three review rounds. All radiologists were blinded to results of the ultrasound, original MR image reports, case outcomes, and PAS diagnosis. A Random Forest Classification model was used to highlight the most predictive pathological MRI markers for major obstetric haemorrhage (MOH), bladder adherence (BA), and placental attachment depth (PAD). ResultsAt delivery, four patients had placenta praevia with no abnormal attachment, two were clinically diagnosed with PAS, and six had histopathological PAS confirmation. Pathological MRI markers (T2-dark intraplacental bands, and loss of retroplacental T2-hypointense line) predicting MOH were more visible using SRR imaging (accuracy 0.73), in comparison to 2D MRI or paired imaging. Bladder wall interruption, predicting BA, was only easily detected by paired imaging (accuracy 0.72). Better detection of certain pathological markers predicting PAD was found using 2D MRI (placental bulge and myometrial thinning (accuracy 0.81)), and SRR (loss of retroplacental T2-hypointense line (accuracy 0.82)). DiscussionThe addition of SRR to 2D MRI potentially improved anatomical assessment of certain pathological MRI markers of abnormal placentation that predict maternal morbidity which may benefit surgical planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call