Abstract

AbstractNon‐woven composite insulation materials were generated from cotton, kenaf, jute, polyester, polypropylene, sucrose‐based epoxy formulations, and aluminum foil. The needlepunched fiber batts were rendered flame resistant by use of inorganic reagents and urea. To discover suitable epoxy formulations to bind the cellulose fibers to themselves or to dissimilar surfaces and to make flexible composites, a comparison of the performance of the known epoxy allyl sucroses (EAS), epoxy crotyl sucroses (ECS), and diglycidyl ether of bisphenol‐A (DGEBA) was made. The epoxies were cured with commercial diethylenetriamine (DETA), and UNIREZs‐2142 and 2355®, to discover a formulation with the following characteristics: (a) low cure temperature; (b) low Young's moduli and glass transition temperatures of cured thermosets for flexible composites; (c) ample bond strength between the fabric and the bonded surfaces; and (d) non‐cytotoxicity and non‐mutagenicity of the epoxies. Based on results following these criteria, EAS was selected, and the formulation comprising EAS and UNIREZ‐2355® was deemed suitable to bind fiber batts to surfaces of any type and geometry. ASTM guidelines were used to construct a wooden frame cube (heat box) for the simultaneous rapid screening of cellulosic fiber batts and composites. The new materials were compared against R‐19 fiberglass insulation for their ability to resist heat flow (denoted by relative R‐values) and time taken to approach thermal equilibrium. Plain non‐woven cellulosic fiber batts showed relative R‐values of 4.0 °F ft2 hr/Btu per inch thickness (0.27 K m2/W per cm), and took about 2 hr to establish equilibrium heat flow. Commercial fiberglass batts showed relative R‐values­of 2.2 per in (0.15 per cm) and took 1 hr to attain equilibrium heat flow. When 6.25 in (15.9 cm) thick batts of fiberglass were needle punched to a thickness of 1 in (2.54 cm), relative R‐values and equilibrium heat flow times were 4.0 per in (0.27 per cm) and 2 hr, respectively. This denoted that the densities and thermal resistances of non‐conducting materials are raised concurrently. Anisotropic heat flow behavior was observed in cellulosic fiber composites with aluminum foil (shiny side out) bonded on one side. It depended upon whether the aluminum foil side or the fibers side faced the heat source. In the latter orientation the aluminum acted as a heat sink, and in the former orientation the foil acted as a poor heat reflector. The poor performance of these insulation composites was related to the fact that aluminum was directly bonded to the fiber batts and was acting as a heat conductor. When cellulose fiber shims (spacers) were placed between the fiber batts and the aluminum foil, the R‐values of the composites were comparable to those of plain batts but the times taken to approach thermal equilibrium increased to >3 hr, denoting that the foil was acting more as a reflector and less as a conductor. Copyright © 2001 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.