Abstract

Studies have shown that metallothionein (MT) may play an important role in modulating the activity of certain Zn-regulated enzymes under various oxidoreductive conditions by either donating or removing Zn. To better determine the role of MT in interprotein metal transfer, we describe a procedure that uses stable isotopically enriched 67Zn 7 metallothionein 2 ( 67Zn 7–MT-2) to quantitatively determine the stoichiometry of transfer of Zn from the protein to a recipient apo-metalloenzyme, apo-carbonic anhydrase (apo-CA) by directly coupled ion exchange high-performance liquid chromatography inductively coupled plasma mass spectrometry. Quantitatively, the transfer of 67Zn was consistent with the enzymatic activation of the apo-enzyme as judged by its esterase activity and ability to cleave p-nitrophenyl acetate. Maximum enzyme activation occurred at an MT-2:apo-CA molar ratio of 1, implying the release of a single atom of Zn from MT-2. Preincubation of 67Zn 7–MT-2 with an excess of oxidized glutathione (GSSG) increased metal donation fourfold, whereas reduced glutathione (GSH) inhibited donation by approximately 50%. By using multiple recipient and donor proteins having different stable isotopic signatures, the technique has the potential for quantitatively studying the kinetic and thermodynamic aspects of Zn transfer between numerous competing ligands in vitro, an important first step toward understanding the regulatory role of this metal in protein functioning and cellular metabolism in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.