Abstract

Students who are strong in logical-mathematical intelligence have a natural advantage in learning and understanding chemistry, which is full of abstractions that are remote from the material world. Simulations provide more-inclusive learning activities for students who are weak in logical-mathematical intelligence. A second advantage of using simulations is that they are not limited by (for example) the quantised energies, integral masses and discrete expectation values of real atoms and molecules. Numerical experiments can be used to investigate the effect of continuously varying atomic mass, bond distance or any other property, from one value to another. Finally, students are more familiar with spreadsheets than more advanced mathematical packages such as MathCAD, MAPLE, Mathematica and other symbolic algebra software. Use of these advanced packages presents additional learning hurdles for students and should be used only for advanced classes. Furthermore, spreadsheets are capable of a level of sophistication that is greater than commonly expected. This can be achieved without the use of MACROs. Examples from the author’s teaching are used to discuss the advantages of spreadsheet simulations for learning chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.