Abstract

Superpixel segmentation methods are generally used as a pre-processing step to speed up image processing tasks. They group the pixels of an image into homogeneous regions while trying to respect existing contours. In this paper, we propose a fast Superpixels segmentation algorithm with Contour Adherence using spectral clustering, combined with normalized cuts in an iterative k-means clustering framework. It produces compact and uniform superpixels with low computational costs. Normalized cut is adapted to measure the color similarity and space proximity between image pixels. We have used a kernel function to estimate the similarity metric. Kernel function maps the pixel values and coordinates into a high dimensional feature space. The objective functions of weighted K-means and normalized cuts share the same optimum point in this feature space. So it is possible to optimize the cost function of normalized cuts by iteratively applying simple K-means clustering algorithm. The proposed framework produces regular and compact superpixels that adhere to the image contours. On segmentation comparison benchmarks it proves to be equally well or better than the state-of-the-art super pixel segmentation algorithms in terms of several commonly used evaluation metrics in image segmentation. In addition, our method is computationally very efficient and its computational complexity is linear.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.