Abstract

The objectives of this study were to investigate the response of cadmium (Cd) distribution and stability in soil aggregates as affected by applying different amendments and to understand the relationship between changes in soil aggregates and alleviation of Cd phytotoxicity to rice after amendment application. In the present study, rice (Oryza sativa L.) was cultivated on a Cd-polluted soil. Five soil amendments were applied, which are as follows: rice husk biochar (BC), Fe-added rice husk biochar (Fe-BC), attapulgite-based mixture (AM), zeolite-based mixture (ZM), and cow manure-based mixture (MM). The effect on Cd redistribution in soil and Cd accumulation in rice plant was evaluated. The results showed that the five amendments applied at the rate of 3% (w/w) significantly increased soil pH and decreased Cd mobility in soil and Cd accumulation in rice plants. The reduction rate of Cd content in rice grains ranged from 41 to 62% after amendment application. The remediation efficiency of the different amendments for decreasing Cd accumulation in rice tissues followed the order of Fe-BC > MM > BC > ZM > AM. Adding amendments promoted the formation of large aggregates (0.2-2.0mm) with more mass loading of Cd and enhanced aggregate stability. Comparatively, Fe-BC was more effective than others for remediation of acid Cd-polluted paddy soil, as a significantly decreased Cd concentration in rice grain after its application was observed. Structural equation modeling (SEM) analysis revealed that DTPA-extractable Cd in small aggregates was the main factor affecting Cd accumulation in rice grain; soil pH directly affected aggregate stability; and aggregate stability was closely related to Cd availability in different size soil particles. These results indicated that the applied amendments were effective in reducing Cd bioavailability, most likely through raising the soil pH, improving aggregate stability, and re-distributing Cd from smaller soil aggregates to larger ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.