Abstract
We demonstrate here that SMART PCR-amplified cDNAs arrayed on a nylon membrane are suitable for high-throughput tissue expression profiling when starting biological materials are limited. We show that SMART cDNA accurately reflects gene expression patterns found in total RNA by comparing the expression level of several target genes in SMART PCR-amplified cDNAs and their corresponding total RNAs. We also arrayed cDNAs from 68 matched tumor and normal samples on a nylon membrane to determine whether SMART PCR-amplified cDNA could be used for detecting differentially expressed genes in these tissues. These arrays containing normalized tumor and normal cDNAs were hybridized with probes for glutathione peroxidase and gelsolin. The hybridization results revealed cancer-related and patient-specific gene expression differences between tumor and normal tissues for these genes. These studies show that SMART PCR-amplified cDNAs maintain the complexity of the original mRNA population and are thus suitable for high-throughput studies to compare the relative abundance of target genes and to detect differentially expressed genes in a wide variety of tissues simultaneously.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.