Abstract

On the 29th of October 2018, a storm named “Vaia” hit North-Eastern Italy, causing the loss of 8 million m3 of standing trees and creating serious damage to the forested areas, with many economic and ecological implications. This event brought up the necessity of a standard procedure for windthrow detection and monitoring based on satellite data as an alternative to foresters’ fieldwork. The proposed methodology was applied in Carnic Alps (Friuli Venezia Giulia, NE Italy) in natural stands dominated by Picea abies and Abies alba. We used images from the Sentinel-2 mission: 1) to test vegetation indices performance in monitoring the vegetation dynamics in the short period after the storm, and 2) to create a windthrow map for the whole Friuli Venezia Giulia region. Results showed that windthrows in forests have a significant influence on visible and short-wave infrared (SWIR) spectral bands of Sentinel-2, both in the short and the long-term timeframes. NDWI8A and NDWI were the best indices for windthrow detection (R2 = 0.80 and 0.77, respectively) and NDVI, PSRI, SAVI and GNDVI had an overall good performance in spotting wind-damaged areas (R2 = 0.60–0.76). Moreover, these indices allowed to monitor post-Vaia forest die-off and showed a dynamic recovery process in cleaned sites. The NDWI8A index, employed in the vegetation index differencing (VID) change detection technique, delimited damaged areas comparable to the estimations provided by Regional Forest System (2545 ha and 3183 ha, respectively). Damaged forests detected by NDWI8A VID ranged from 500 m to 1500 m a.s.l., mainly covering steep slopes in the south and east aspects (42% and 25%, respectively). Our results suggested that the NDWI8A VID method may be a cost-effective and accurate way to produce windthrow maps, which could limit the risks associated with fieldwork and may provide a valuable tool to plan tree removal interventions in a more efficient way.

Highlights

  • The recent growth of satellite technology in the field of Earth observation allows the measurement of electromagnetic radiation with a higher spatial, temporal and radiometric resolution, being potentially useful to detect environmental disturbances caused by natural hazards [1,2]

  • Our results suggested that the NDWI8A vegetation index differencing (VID) method may be a costeffective and accurate way to produce windthrow maps, which could limit the risks associated with fieldwork and may provide a valuable tool to plan tree removal interventions in a more efficient way

  • An increase in control sites’ variability was detected after Vaia for all indices, less in NDWI8A compared to other indices

Read more

Summary

Introduction

The recent growth of satellite technology in the field of Earth observation allows the measurement of electromagnetic radiation with a higher spatial, temporal and radiometric resolution, being potentially useful to detect environmental disturbances caused by natural hazards [1,2]. This feature is relevant considering future scenarios where extreme natural events and their impacts are expected to become more frequent and intense [3]. The susceptibility of individual trees and tree stands to wind damage, and its mechanism, is determined by the properties of the wind climate (wind speed, gust speed, duration), forest structure (e.g., fragmentation and age), tree/stand characteristics (e.g., species, height, diameter at breast height, crown and rooting characteristics and stand density) and site conditions (e.g., soil type and topography) [7,8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call