Abstract

This study aimed to automatically classify physical fitness and cardiometabolic risk in a Chilean adolescent using self-organizing maps. This cross-sectional study analysed a nationally representative database from the Physical Education Quality Measurement System (n = 7197). Physical fitness and cardiometabolic risk variables were derived from anthropometric indicators. Self-Organizing maps (SOM) were employed to identify participant profiles based on an unsupervised predictive model. After implementing and training the SOM, a detailed analysis of the generated maps was conducted to interpret the revealed relationships and clusters. The analysis resulted in three classification groups, categorizing the sample into low, moderate, and high-risk levels. Students with better physical fitness exhibited lower cardiometabolic risk levels and a lower body mass index. SOM, through an unsupervised model, is a reliable tool for classifying cardiometabolic risk and physical fitness in adolescents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.