Abstract

Recombinant Epstein-Barr viruses with a stop codon inserted into the nuclear protein 3B (EBNA 3B) open reading frame were generated by second-site homologous recombination. These mutant viruses infected and growth transformed primary B lymphocytes, resulting in the establishment of lymphoblastoid cell lines (LCLs). Polymerase chain reaction analysis and Southern hybridizations with infected cell DNA demonstrated the presence of the mutant EBNA 3B and the absence of wild-type EBNA 3B. Immunoblot analysis of the LCLs with affinity-purified EBNA 3B antibodies confirmed the absence of EBNA 3B cross-reactive protein. Virus was reactivated from two of these infected LCLs and serially passaged through primary B lymphocytes. The newly infected cells contained only the mutant recombinant virus. No difference was noted between mutant and wild-type recombinants, derived in parallel, in latent (other than EBNA 3B) or lytic cycle-infected cell virus protein expression or in the growth of the latently infected transformed cell lines. These data indicate that the EBNA 3B protein is not critical for primary B-lymphocyte infection, growth transformation, or lytic virus infection in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.