Abstract

In this work was evaluated the activity of samarium acetate (III) (Sm(OAc)3) as a possible initiator in the polymerization by ring opening of trimethylene carbonate (TMC). All polymerizations were carried out under solvent-free melt conditions in ampoules-like flasks, equipped with a magnetic stirrer. The effects of different parameters of reaction, such as molar ratio monomer to initiator, temperature and reaction time, on typical variables of polymers, e.g., conversion of TMC to poly(trimethylene carbonate) (PTMC), dispersity and molar mass, were analyzed. The molar ratio of monomer to initiator was varied between 0 and 1000 mol/mol and the temperature among 70 and 150 °C. Nuclear Magnetic Resonance (1H-NMR and HMBC) and Size Exclusion Chromatography (SEC) were used to characterize the polymers. The results indicate that the Sm(OAc)3 induces the polymerization of TMC to high conversion with number-average molecular weights of 3.11 × 103 to 38.40 × 103 Da. Based on the 1H-NMR end-group analysis of low-molecular-weight PTMC, it was proposed a coordination–insertion mechanism for the polymerization, with a breakdown of the acyl-oxygen bond of the TMC. In according to the kinetic study carried out, the polymerization rate is first-order with respect to monomer concentration with apparent rate constants of kap = 7.02 × 10−4 mol × L−1 × h−1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call