Abstract

The spread of virus-induced infectious diseases through airborne routes of transmission is a global concern for economic and medical reasons. To study virus transmission, it is essential to have an effective aerosol collector such as the growth tube collector (GTC) system that utilizes water-based condensation for collecting virus-containing aerosols. In this work, we characterized the GTC system using bacteriophage MS2 as a surrogate for a small RNA virus. We investigated using RNA extraction and reverse transcription- polymerase chain reaction (RT-PCR) to study the total virus collection efficiency of the GTC system. Plaque assays were also used to enumerate viable viruses collected by the GTC system compared to that by a commercially available apparatus, the SKC® Biosampler. The plaque assay counts were used to enumerate viable viruses whereas RT-PCR provides a total virus count, including those viruses inactivated during collection. The effects of relative humidity (RH) and other conditions on collection efficiency were also investigated. Our results suggest that the GTC has a collection efficiency for viable viruses between 0.24 and 1.8% and a total virus collection efficiency between 18.3 and 79.0%, which is 1-2 orders of magnitude higher than that of the SKC® Biosampler. Moreover, higher RH significantly increases both the viable and total collection efficiency of the GTC, while its effect on the collection efficiency of the SKC® Biosampler is not significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.