Abstract

The current work is a scoping study to determine which heat transfer effects are significant in the fuel/backfill gas region of spent nuclear fuel transport casks. A two-dimensional finite volume mesh that accurately models the geometry of a 7×7 Boiling Water Reactor (BWR) assembly with its channel in a square isothermal enclosure is constructed. The peak cladding temperature is determined using computational fluid dynamics (CFD) simulations for a range of enclosure temperatures, fuel heat generation rates, cladding surface emissivities, and for both nitrogen and helium backfill gases. This work quantifies both the effect of buoyancy induced gas motion in the fuel/backfill gas region and the conditions when it does not significantly affect heat transfer. Future cask design simulations that neglect gas motion will require less computational resources than ones that do not. This work also quantifies the sensitivity of the maximum cladding temperature to fuel cladding emissivity. This helps quantify the uncertainty of temperature predictions if the emissivity is not known. The current CFD technique must be experimentally benchmarked before it may be used with confidence to predict peak cladding temperatures in transport casks. This work indicates that the thermal resistance between a BWR assembly’s channel and the basket walls may be modeled analytically. This will reduce the effort required for benchmark experiments because they will not need to include the channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.