Abstract

Wood-polymer composites (WPCs) with polypropylene (PP) matrix suffer from low toughness, and fossil-based impact modifiers are used to improve their performance. Material substitution of virgin fossil-based materials and material recycling are key aspects of sustainable development and therefore recycled denim fabric, and elastomer were evaluated to replace the virgin elastomer modifier commonly used in commercial WPCs. Microtomography images showed that the extrusion process fibrillated the denim fabric into long, thin fibers that were well dispersed within the WPC, while the recycled elastomer was found close to the wood fibers, acting as a soft interphase between the wood fibers and PP. The fracture toughness (KIC) of the WPC with recycled denim fabric matched the commercial WPC which was 1.4 MPa m1/2 and improved the composite tensile strength by 18% and E-modulus by 54%. Recycled elastomer resulted in slightly lower KIC, 1.1 MPa m1/2, as well as strength and modulus while increasing elongation and contributing to toughness. The results of this study showed that recycled materials can potentially be used to replace virgin fossil-based elastomeric modifiers in commercial WPCs, thereby reducing the CO2 footprint by 23% and contributing to more efficient use of resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.