Abstract

Estimating the quantity of seepage through the foundation and body of a dam using proper health and safety monitoring is critical to the effective management of disaster risk in a reservoir downstream of the dam. In this study, a deep learning model was constructed to predict the extent of seepage through Pakistan’s Tarbela dam, the world’s second largest clay and rock dam. The dataset included hydro-climatological, geophysical, and engineering characteristics for peak-to-peak water inflows into the dam from 2014 to 2020. In addition, the data are time series, recurring neural networks (RNN), and long short-term memory (LSTM) as time series algorithms. The RNN–LSTM model has an average mean square error of 0.12, and a model performance of 0.9451, with minimal losses and high accuracy, resulting in the best-predicted dam seepage result. Damage was projected using a deep learning system that addressed the limitations of the model, the difficulties of calculating human activity schedules, and the need for a different set of input data to make good predictions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.