Abstract
Pseudomonas aeruginosa and other gram-negative isolates from patients with cystic fibrosis (CF) may be difficult to identify because of their marked phenotypic diversity. We examined 200 gram-negative clinical isolates from CF respiratory tract specimens and compared identification by biochemical testing and real-time PCR with multiple different target sequences using a standardized combination of biochemical testing and molecular identification, including 16S rRNA partial sequencing and gyrB PCR and sequencing as a "gold standard." Of 50 isolates easily identified phenotypically as P. aeruginosa, all were positive with PCR primers for gyrB or oprI, 98% were positive with exotoxin A primers, and 90% were positive with algD primers. Of 50 P. aeruginosa isolates that could be identified by basic biochemical testing, 100% were positive by real-time PCR with gyrB or oprI primers, 96% were positive with exotoxin A primers, and 92% were positive with algD primers. For isolates requiring more-extensive biochemical evaluation, 13 isolates were identified as P. aeruginosa; all 13 were positive with gyrB primers, 12 of 13 were positive with oprI primers, 11 of 13 were positive with exotoxin A primers, and 10 of 13 were positive with algD primers. A single false-positive P. aeruginosa result was seen with oprI primers. The best-performing commercial biochemical testing was in exact agreement with molecular identification only 60% of the time for this most difficult group. Real-time PCR had costs similar to those of commercial biochemical testing but a much shorter turnaround time. Given the diversity of these CF isolates, real-time PCR with a combination of two target sequences appears to be the optimum choice for identification of atypical P. aeruginosa and for non-P. aeruginosa gram-negative isolates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.