Abstract
AbstractIn recent years, global collaboration has become a commonly used strategy for new drug development. To accelerate the development process and shorten the approval time, the design of multi-regional clinical trials (MRCTs) incorporates subjects from many countries around the world under the same protocol. After showing the overall efficacy of a drug in all global regions, one can also simultaneously evaluate the possibility of applying the overall trial results to all regions and subsequently support drug registration in each of them. Several statistical methods have been proposed for the design and evaluation of MRCTs. Most of these approaches, however, assume a common variability of the primary endpoint across regions. In practice, this assumption may not be true due to differences across regions. In this paper, we use a random effect model for modeling heterogeneous variability across regions for the design and evaluation of MRCTs.KeywordsRandom Effect ModelTotal Sample SizeExpected MaximumExpected Maximum AlgorithmSample Size DeterminationThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.