Abstract
R-loop mapping of DNA:RNA hybrids formed between mutant pro-alpha 2(I) mRNAs and appropriate human pro-alpha 2(I) genomic clones was employed to define the location of mutations which result in the synthesis of shortened pro-alpha 2(I) chains in skin fibroblasts from two variants of osteogenesis imperfecta. Hybridization of the genomic clone NJ-9 with pro-alpha 2(I) mRNA from a patient with a mild atypical form of the disease resulted in the identification of mutant pro-alpha 2(I) mRNA lacking the sequences which correspond to exon 11 of the pro-alpha 2(I) collagen gene. Exon 11, a 54-base pair exon, encodes amino acids 73 to 90 of the alpha 2(I) chain. Also, electron microscopy of R-loop structures formed between the genomic clone NJ-1 and mRNA from a variant with a perinatal lethal form of osteogenesis imperfecta visualized pro-alpha 2(I) mRNAs which did not hybridize to the sequences of exon 28, a 54-base pair exon coding for amino acids 448 to 465 of the alpha 2(I) chain. Moreover, nuclease S1 mapping of the variant's mutant pro-alpha 2(I) mRNA, employing the human pro-alpha 2(I) cDNA clone Hf-15, confirmed the location of the mismatch to the sequences corresponding to exon 28. Although the data do not determine the exact nature of the mutations, they illustrate the use of R-loop mapping as an alternative approach to S1 mapping analysis for the detection and localization of collagen mRNA deletions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.