Abstract

Currently, the materials with the highest thermoelectric figure of merit (ZT) are one-band materials. The presence of both electrons and holes lowers ZT, so two-band materials such as semimetals are not useful thermoelectric materials. However, by preparing these materials in the form of two-dimensional quantum-well superlattices, it is possible to separate the two bands and transform the material to an effectively one-carrier system. We have investigated theoretically the effect of such an approach and our results indicate that a significant increase in ZT may be achieved. We have also evaluated the possibility of using intercalation as a means to achieve an increase in ZT. Our results allow the possibility of using new types of materials as thermoelectric refrigeration elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call