Abstract
Activated carbon (AC) is a cost-effective catalyst for the oxygen reduction reaction (ORR) in air-cathode microbial fuel cells (MFCs). To enhance the catalytic activity of AC cathodes, AC powders were pyrolyzed with iron ethylenediaminetetraacetic acid (FeEDTA) at a weight ratio of FeEDTA:AC = 0.2:1. MFCs with FeEDTA modified AC cathodes and a stainless steel mesh current collector produced a maximum power density of 1580 ± 80 mW/m(2), which was 10% higher than that of plain AC cathodes (1440 ± 60 mW/m(2)) and comparable to Pt cathodes (1550 ± 10 mW/m(2)). Further increases in the ratio of FeEDTA:AC resulted in a decrease in performance. The durability of AC-based cathodes was much better than Pt-catalyzed cathodes. After 4.5 months of operation, the maximum power density of Pt cathode MFCs was 50% lower than MFCs with the AC cathodes. Pyridinic nitrogen, quaternary nitrogen and iron species likely contributed to the increased activity of FeEDTA modified AC. These results show that pyrolyzing AC with FeEDTA is a cost-effective and durable way to increase the catalytic activity of AC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.