Abstract

Salmonella enterica isolates were recovered from swine at a collaborating processing plant over a 2-month period in the spring of 2000. In the present study, molecular subtyping by pulsed-field gel electrophoresis (PFGE) was performed on the 581 confirmed Salmonella isolates from the 84 Salmonella-positive samples obtained from the previous study. A total of 32 different PFGE pulsotypes were observed visually, and a BioNumerics software analysis clustered those pulsotypes into 12 PFGE groups. The B, F, and G groups predominated throughout the sampling period and were isolated from 39, 22, and 13% of the swine, respectively. In addition, multiple isolates were obtained from 67 of the 84 Salmonella-positive samples, and subtyping revealed multiple PFGE profiles in 35 of these 67 (62%) samples. Both carcass and fecal isolates of Salmonella were recovered from 13 swine, resulting in "matched" samples. Molecular typing of the 252 isolates recovered from the matched samples revealed that 7 (54%) of the 13 carcasses were contaminated with Salmonella pulsotypes that were not isolated from the feces of the same animal. Conversely, from 6 of the 13 (46%) matched animals, Salmonella clonal types were isolated from the feces that were not isolated from the carcass of the same animal. These data establish that each lot of swine introduces new contaminants into the plant environment and that swine feces from one animal can contaminate many carcasses. In addition, these results indicate that the examination of multiple Salmonella isolates from positive samples is necessary to determine the variety of potential contaminants of swine carcasses during slaughter and processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call