Abstract
Public health monitoring of Community Water Fluoridation (CWF) schemes requires estimates of exposure to fluoride in public water supplies (PWS). We aimed to use routine data to estimate population exposure to PWS-fluoride in England and to determine whether PWS-fluoride exposure from 2005 to 2015 could be used as a proxy for exposure for 1995–2004, when fluoride concentration data that could be linked to population health data were unavailable. We calculated annual mean water supply zone PWS-fluoride concentrations from monitoring data for 1995–2015, stratified by fluoridation scheme-flagging. We allocated annual 2005–2015 mean PWS-fluoride concentrations to small area boundaries to describe population exposure within five concentration categories (< 0.1 to ≥ 0.7 mg/L). We compared zone-level 1995–2004 and 2005–2015 mean PWS-fluoride concentrations using Spearman correlation. Most (72%) of the population received PWS with < 0.2 mg/L fluoride and 10% with ≥ 0.7 mg/L. Fluoride concentrations in 1995–2004 and 2005–2015 were similar (median 0.11 mg/L (lower quartile–upper quartile (LQ–UQ) 0.06–0.17) and 0.11 mg/L (LQ–UQ 0.07–0.17), respectively) and highly correlated (coefficient 0.93) if un-fluoridated but differed (1995–2004 median 0.78 mg/L (LQ–UQ 0.59–0.92); 2005–2015 0.84 mg/L (LQ–UQ 0.72–0.95)) and correlated weakly (coefficient 0.31) if fluoridated. Fluoride concentrations in 2005–2015 approximate those in 1995–2004 but with a greater risk of misclassification in fluoridation schemes.
Highlights
The fluorine element and fluoride compounds are naturally occurring and likely to be found in sources of drinking water in varying amounts and are present in some foods and drinks
Fluoride concentrations in Community Water Fluoridation (CWF) zones were typically lower than target concentrations
Use of water supply boundaries to allocate water fluoridation status has been noted as an efficient method for exposure estimation for public health monitoring studies (Skinner 2012; McLaren 2016), but our findings emphasise the need to use an average of the measured fluoride concentrations
Summary
The fluorine element and fluoride compounds ( referred to as ‘fluoride’) are naturally occurring and likely to be found in sources of drinking water in varying amounts and are present in some foods and drinks. Exposure to fluoride can reduce the risk of dental caries (tooth decay) (Selwitz et al 2007), and Community Water Fluoridation (CWF) schemes that adjust fluoride concentrations in water supplies to target concentrations typically in the range of 0.7–1 mg/ L have been shown to effectively reduce caries prevalence and severity in children (Iheozor-Ejiofor et al 2015). Previous monitoring (Public Health England 2014) and other epidemiological studies (McLaren and Emery 2012; Skinner 2012) have used data from routine PWS monitoring to estimate population exposure to fluoridation. These population exposure models were limited to simple binary exposures (i.e. fluoridated or not) rather than the PWS fluoride concentration, risking exposure misclassification and preventing dose–response analysis. The latter may be important when determining the optimal fluoride concentration to maximise caries prevention benefit
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.