Abstract

Monitoring pasture growth rate is an important component of managing grazing livestock production systems. In this study, we demonstrate that a pasture growth rate (PGR) model, initially designed for NOAA AVHRR normalised difference vegetation index (NDVI) and since adapted to MODIS NDVI, can provide PGR at spatial resolution of ~2 m with an accuracy of ~2 kg DM/ha.day when incorporating in-situ sensor data. A PGR model based on light-use efficiency (LUE) was combined with in-situ measurements from proximal weather (temperature), plant (fraction of absorbed photosynthetically active radiation, fAPAR) and soil (relative moisture) sensors to calculate the growth rate of a tall fescue pasture. Based on an initial estimate of LUEmax for the candidate pasture, followed by a process of iterating LUEmax to reduce prediction errors, the model was capable of estimating PGR with a root mean square error of 1.68 kg/ha.day (R2 = 0.96, P-value ≈ 0). The iterative process proved to be a convenient means of estimating LUE of this pasture (1.59 g DM/MJ APAR) under local conditions. The application of the LUE-PGR approach to developing an in-situ pasture growth rate monitoring system is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.