Abstract
Given the computational challenges associated with valuing large variable annuity (VA) portfolios, a variety of data mining frameworks, including metamodeling and active learning, have been proposed in recent years. Active learning, a promising alternative to metamodeling, enhances the efficiency of VA portfolio assessments by adaptively improving a predictive regression model. This is achieved by augmenting data for model training with strategically selected informative samples. Successful application of active learning requires an effective metric in order to gauge the informativeness of data. Current sampling methods, which focus on prediction error-based informativeness, typically rely solely on prediction variance and assume an unbiased predictive model. In this paper, we address the fact that prediction bias can be nonnegligible in large VA portfolio valuation and investigate the impact of prediction bias in both the modeling and sampling stages of active learning. Our experimental results suggest that bias-based sampling can rival the efficacy of traditional ambiguity-based sampling, with its success contingent upon the extent of bias present in the predictive model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.