Abstract
BackgroundHealthcare workers (HCWs) are at particular risk during pandemics and epidemics of highly virulent diseases with significant morbidity and case fatality rate. These diseases include severe acute respiratory syndrome coronaviruses, SARS-CoV-1 and SARS-CoV-2, Middle Eastern Respiratory Syndrome (MERS), and Ebola. With the current (SARS-CoV-2) global pandemic, it is critical to delineate appropriate contextual respiratory protection for HCWs. The aim of this systematic review was to evaluate the effect of powered air-purifying respirators (PAPRs) as part of respiratory protection versus another device (egN95/FFP2) on HCW infection rates and contamination.MethodsOur primary outcomes included HCW infection rates with SARS-CoV-2, SARS-CoV-1, Ebola, or MERS when utilizing PAPR. We included randomized controlled trials, non-randomized controlled trials, and observational studies. We searched the following databases: MEDLINE, EMBASE, and Cochrane Library (Cochrane Database of Systematic Reviews and CENTRAL). Two reviewers independently screened all citations, full-text articles, and abstracted data. Due to clinical and methodological heterogeneity, we did not conduct a meta-analysis. Where applicable, we constructed evidence profile (EP) tables for each individual outcome. Confidence in cumulative evidence for each outcome was classified according to the GRADE system.ResultsWe identified 689 studies during literature searches. We included 10 full-text studies. A narrative synthesis was provided. Two on-field studies reported no difference in the rates of healthcare workers performing airway procedures during the care of critical patients with SARS-CoV-2. A single simulation trial reported a lower level of cross-contamination of participants using PAPR compared to alternative respiratory protection. There is moderate quality evidence that PAPR use is associated with greater heat tolerance but lower scores for mobility and communication ability. We identified a trend towards greater self-reported wearer comfort with PAPR technology in low-quality observational simulation studies.ConclusionField observational studies do not indicate a difference in healthcare worker infection utilizing PAPR devices versus other compliant respiratory equipment. Greater heat tolerance accompanied by lower scores of mobility and audibility in PAPR was identified. Further pragmatic studies are needed in order to delineate actual effectiveness and provider satisfaction with PAPR technology.Systematic review registrationThe protocol for this review was prospectively registered with the International Register of Systematic Reviews identification number CRD42020184724.
Highlights
Healthcare workers (HCWs) are at particular risk during pandemics and epidemics of highly virulent diseases with significant morbidity and case fatality rate
We identified no studies assessing the efficacy of Powered air-purifying respirator (PAPR) technology compared to alternative respirator/ facepiece during care for patients with Severe acute respiratory syndrome (SARS)-Cov-1, Ebola, or Middle Eastern Respiratory Syndrome (MERS)
We identified moderate quality of evidence towards improved healthcare worker comfort with PAPR technology compared with alternative respirators
Summary
Healthcare workers (HCWs) are at particular risk during pandemics and epidemics of highly virulent diseases with significant morbidity and case fatality rate. These diseases include severe acute respiratory syndrome coronaviruses, SARS-CoV-1 and SARS-CoV-2, Middle Eastern Respiratory Syndrome (MERS), and Ebola. High infectivity combined with high case fatality rate during the COVID-19 pandemic has placed an emphasis on healthcare worker (HCW) protection both from a personal as well as a societal perspective. Several other outbreaks of virulent highly infectious diseases have occurred in recent decades including the Ebola crisis in 2014–2016, Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome (SARS, due to SARSCoV-1) epidemic [1, 2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.