Abstract

Observation of a potentiometric sensor's response behaviour after injection in flow injection analysis at different concentrations allowed studying “on” and “off” kinetics of the analyte's adsorption/diffusion behaviour. The alkaloid metergoline was mostly used as an example. kon and koff rate constant values were measured, and the association constant Kass, and ΔG values of the analyte–surface interaction were calculated with an adsorption-based model which proved to be fully applicable. kon increased by decreasing the sensor dimensions, while koff was unaffected by miniaturization. Increasing acetonitrile concentrations in the running buffer increased koff, while kon was unaffected. The experimentally determined ΔG values of the analyte–surface interaction showed a linear relation to the response of the sensor, in mV. This knowledge was applied to optimize the potentiometric detection of plant alkaloids in (U)HPLC. Sub-micromolar detection limits were obtained with the potentiometric detector/(U)HPLC combination. This is the first time that the response rates and the response itself can be modelled accurately for coated wire potentiometric sensors, and it is the first application of a potentiometric detector in UPLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.