Abstract

Plant seedlings are susceptible to copper (Cu) toxicity. As copper levels in soil continue to rise with the use of Cu-based agrochemicals, alleviation of Cu stress is of paramount importance. Traditional approaches to allay Cu stress are well documented but are typically found to be either costly or inefficient. Given their small size, ionic character, and high biocompatibility, specific polymeric nanoparticles (NPs) may have the potential for mitigating metal toxicity to crops. In this pioneering study, we investigated the effects of newly synthesized polysuccinimide NPs (PSI-NPs) on corn (Zea mays L.) seed germination and seedling growth under different levels of Cu stress. The results showed that PSI-NPs influenced seed germination in a dose-dependent manner with an optimal rate of 200 mg L−1. In addition, the positive effects of PSI-NPs on seed germination indexes were found to be positively correlated with enhanced seed imbibition (r = 0.82). The addition of PSI-NPs significantly mitigated Cu stress as indicated by improved growth of shoots and roots, and higher antioxidant enzyme activity observed with co-exposure to PSI-NPs as compared to Cu stress treatment only. Cu concentrations in seedling root and shoot significantly increased with increasing Cu treatment rate. Higher uptake of Cu by plant was observed in the Cu-PSI-NPs co-treatment than single Cu treatment. The alleviation effect of PSI-NPs could be explained by the enhanced antioxidant enzyme activities and storage of Cu as Cu-PSI complexes in plants with reduced phytotoxicity. These findings will open the opportunity of using PSI-NPs as a regulator to enhance seed germination and improve seedling growth under stress of heavy metals like Cu.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.