Abstract

Large-scale column experiments were undertaken to evaluate the potential of in situ polymer mats (installed in series) to be used as permeable reactive barriers for delivery of oxidants and reductants to induce sequential bioremediation of ammonium-contaminated groundwater (approximately 120mg L(-1) NH4+-N), without bioaugmentation. The strategy was for the first group of polymer mats to deliver oxygen to induce bacterial nitrification of the ammonium to nitrite/ nitrate as the groundwater moved past and for the second group of polymer mats to deliver hydrogen or ethanol, to induce bacterial denitrification of the nitrite/nitrate to produce nitrogen gas. Once purging of the first polymer mat commenced, ammonium concentrations decreased downgradient from the polymer mats. Nitrification rates increased and stabilized over the 6-month experiment, with stable nitrification half-lives in the range 0.07-0.25 days. Nitrification most likely occurred in a biologically active zone at the polymer wall/aqueous interface. With hydrogen delivery via the polymer mats, a denitrification half-life (nitrate plus nitrite removal) of 3.5 days was induced. Denitrification rates were significantly enhanced when ethanol was delivered via a polymer mat, with denitrification half-lives in the range of 0.12-0.34 days. Nitrification/ denitrification rates were maintained for groundwater flow rates up to 300 m yr(-1), suggesting oxygen and ethanol delivery rates via the polymer mats were sufficient not to limit nitrification or denitrification. In soil columns, the polymer mat delivery system provided an effective and reliable technique for delivery of oxygen and hydrogen or ethanol for sequential nitrification/denitrification of ammonium-contaminated groundwater. Scale-up of this concept to a field pilot-scale is currently underway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.