Abstract
Abstract Physical structure of pixelated detectors provides a unique tool to evaluate the effects of different types of defects in the semiconductor material that is used to fabricate the detectors. The spectroscopic performance measured for individual pixels or groups of pixels can be used to correlate point defects or fields of inhomogeneities within the material with the charge collected from photoelectric events. A block of single crystal mercuric iodide of approximately 18×18 mm 2 area and between 6 and 10 mm thick is prepared. The homogeneity of this material is then investigated with light in the transparent region for HgI 2 using an optical microscope. Several types of defects can be identified in this way by the scattering of light, for example, single large inclusions or voids and areas of haziness consisting of fields of small inclusions. Standard procedures are used to fabricate from this block a pixelated detector with a 121-pixel anode structure. The performance of each pixel is measured, and differences in charge collection are correlated with the optical data. Measurement data are presented, and possible mechanisms of the interactions between the defects and the charge carriers are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.