Abstract

BackgroundCryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. In addition, the lower susceptibility of this yeast to azoles is a growing problem in health care. To date, there are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Since the essential oils (EOs) are considered as a potential rich source of bioactive antimicrobial compounds, we evaluated the antifungal activity of Origanum vulgare (oregano), Pinus sylvestris (pine), and Thymus vulgaris (thyme red) EOs, and their components (α-pinene, carvacrol, thymol) compared with fluconazole, itraconazole, and voriconazole, against C.neoformans clinical strains. Then, we investigated the effect of EOs and components in combination with itraconazole.MethodsEO composition was analysed by Gas chromatography-mass spectrometry (GC-MS). A broth microdilution method was used to evaluate the susceptibility of C.neoformans to azoles, EOs and components. Checkerboard tests, isobolograms and time-kill assays were carried out for combination studies.ResultsSix C.neoformans isolates were susceptible to azoles, while one C.neoformans exhibited a reduced susceptibility to all tested azole drugs. All EOs exerted a good inhibitory activity against all C.neoformans strains. Pine EO was the most effective. Among components, thymol exerted the most remarkable activity. By checkerboard testing and isobolographic analysis, combinations of itraconazole with oregano, pine, or thyme EOs, and carvacrol were found to be synergistic (FICI≤0.5) against azole susceptible C.neoformans. Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme EO (chemotype: thymol 26.52%; carvacrol 7.85%), and carvacrol. Time-kill assays confirmed the synergistic effects of itraconazole and oregano or thyme EO against azole susceptible C.neoformans. Binary mixtures of itraconazole/thyme EO or carvacrol yielded additive effects on the azole not susceptible C.neoformans.ConclusionsOur findings highlight the potential effectiveness of thyme, oregano EOs, and carvacrol as natural and cost-effective adjuvants when used in combination with itraconazole. Identification of EOs exerting these effects could be one of the feasible ways to overcome drug resistance, reducing drug concentration and side effects.

Highlights

  • Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients

  • Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme essential oils (EOs), and carvacrol

  • Time-kill assays confirmed the synergistic effects of itraconazole and oregano or thyme EO against azole susceptible C.neoformans

Read more

Summary

Introduction

Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. There are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Systemic fungal infections caused by Cryptococcus neoformans, an encapsulated pathogenic yeast, are a serious health concern for immunocompromised patients worldwide, and occasionally in immunocompetent subjects [1, 2]. There are few other molecules with any activity towards C.neoformans, leading to heightened interest in finding new alternatives to conventional drugs for the treatment of mycosis caused by this yeast [1]. Essential oils (EOs) have emerged in recent years as potential natural and economic alternatives or as adjuvants in combination with conventional antifungal agents and continue to be of great interest [5,6,7,8,9,10]. As EOs are multicomponent, there is a low probability by microorganisms to develop resistance to this mixture of substances than to a single target

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call