Abstract

Raman spectroscopy is an optical technique able to interrogate biological tissues, giving us an understanding of the changes in molecular structure that are associated with disease development. The Kerr-gated Raman spectroscopy technique uses a picosecond pulsed laser as well as fast temporal gating of collected Raman scattered light. Prostate samples for this study were obtained by taking a chip at the transurethral resection of the prostate (TURP), and bladder samples from a biopsy taken at transurethral resection of bladder tumor (TURBT) and TURP. Spectra obtained through the bladder and prostate gland tissue, at different time delays after the laser pulse, clearly show change in the spectra as depth profiling occurs, eventually showing signals from the uric acid cell and urea cell, respectively. We show for the first time, using this novel technique, that we are able to obtain spectra from different depths through both the prostate gland and the bladder. This has major implications in the future of Raman spectroscopy as a tool for diagnosis. With the help of Raman spectroscopy and Kerr gating, it may be possible to pick up the spectral differences from a small focus of adenocarcinoma of the prostate gland in an otherwise benign gland, and also stage the bladder cancers by assessing the base of the tumor post resection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.