Abstract

This study evaluated the use of ultrasound (US), high-shear dispersion (HSD), stirring (ST), and low or high pressure homogenization (LPH or HPH) technologies to modify the goat milk cream (GMC) structure, focusing on improving the enzymatic hydrolysis of its lipids. The GMC structure was evaluated, as well as its creaming and emulsion stability index (ESI). The processed GMC was hydrolyzed by lipase at 50 °C for 300 min, and the fatty acids concentration (FAC) was evaluated over the reaction. ST, HPH, and HSD showed ∼ 90% lower emulsion destabilization, 10 times higher ESI, and smaller fat globule size than unprocessed GMC. The pretreatments increased the hydrolysis rate up to 2.4 times and the final FAC up to 8.7 times. ST (4 min), HPH (40 MPa) and HSD (5 min/ 25,000 rpm) showed the best results, which were correlated with the changes in the GMC structure. The results suggest that the physical treatments impacted the substrate structure, favoring enzyme activity and accelerating the hydrolysis degree. Therefore, the application of physical processes can be an interesting strategy to enhance the hydrolysis of GMC, aiming to produce compounds of industrial interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.