Abstract

In this paper, we examine a laser-based approach to remotely initiate, measure, and differentiate acoustic and vibrational emissions from trace quantities of explosive materials against their environment. Using a pulsed ultraviolet laser (266nm), we induce a significant (>100 Pa) photoacoustic response from small quantities of military-grade explosives. The photoacoustic signal, with frequencies predominantly between 100 and 500kHz, is detected remotely via a wideband laser Doppler vibrometer. This two-laser system can be used to rapidly detect and discriminate explosives from ordinary background materials, which have significantly weaker photoacoustic response. A 100 ng/cm2 limit of detection is estimated. Photoablation is proposed as the dominant mechanism for the large photoacoustic signals generated by explosives.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.