Abstract
Sustainability awareness in the building industry has increased in recent years, and several initiatives have been developed. One of the areas gaining attention recently is the application of phase change materials (PCMs) in concrete. PCMs are materials capable of storing and releasing energy based on the temperature of the environment in which they are situated. This capability makes them provide heat during cold times, and absorb heat when the temperature is higher. As concrete is the most used building material in the world, the use of PCMs in concrete will be a great way to widen the application of PCMs. However, as the composition of concrete determines its properties; hence, the use of PCM in concrete can be detrimental to the properties of concrete. Some of the negative effects on the properties of concrete include reduced mechanical properties and corrosion of reinforcements. In addition, PCMs suitable for concrete are not readily available in the market, and extremely expensive when available. Also, lack of long-term data on the effect of PCM on concrete's durability has discouraged stakeholders to accept the use of PCMs in concrete. This paper explored the current challenges faced by the application of PCMs in concrete which, and possible opportunities that will open more pathway for extensive research and applications of PCM in concrete. It was concluded that the use of right type and proportion of PCM in concrete can result in similar strength to those of control samples. Also, certain methods of incorporating PCMs into the concrete were found to be more effective. Therefore, it is imperative that building engineers carry out initial tests to determine the most appropriate incorporation method to be used. Finally, huge energy savings can be achieved through the use of PCM in concrete without any significant reduction in mechanical strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.