Abstract
In order to achieve fuzzy control of nitrification in a Sequencing Batch Reactor (SBR) brewery wastewater was used as the substrate. The effect of alkalinity on pH variation during nitrification was systematically studied, at the same time the variations of DO and ORP were investigated. Alkalinity and pH of the wastewater were adjusted by adding sodium bicarbonate at five levels and sodium hydroxide at two levels. Unadjusted wastewater was also studied. According to the results, variation of pH could be divided into rising type and descending type. When bicarbonate alkalinity was deficient or sufficient, the descending type happened. If alkalinity was deficient, the pH decreasing rate got slower when nitrification nearly stopped; if alkalinity was sufficient, at the end of nitrification pH turned from decrease to increase. This was the most common situation and pH could be used to control the end of nitrification. When alkalinity was excessive, the rising type happened, pH was increasing at nearly a constant rate during and after nitrification and could not be used to control the nitrification time, but if the aeration rate was moderate DO could be used to control the nitrification time. This situation seldom happened. Therefore the variation of pH could not only be used to control the nitrification time but also to judge whether the alkalinity was enough or not. On the basis of this, the fuzzy controller of nitrification in SBR was constructed. When discussing the influence of pH on nitrification rate the composition and concentration of alkalinity must be considered or else the results may be incomprehensive. And to some extent the influence of alkalinity on nitrification rate was more important than pH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.